Information Retrieval Systems Class Notes (Week 6)

Prepared by: Hamed Rezanejad

δ: Decoupling coefficient

$$\delta_i =>$$
 for documents 1<= i <= m Average δ

$$\delta_i' =>$$
 for terms 1<= i <= n Average δ'

$$n_c = \sum \delta_i = m \times \delta$$
 , $n_c{'} = \sum \delta_i = n \times \delta{'} => n_c = n_c{'}$

> From previous example:

$$n_c = \sum c_{ii} = \sum \delta_i \approx 2$$

$$C_{ij} = \alpha_i \times \sum_{k=1}^n d_{ik} \times \beta_k \times d_{jk}$$
, $\delta_i = C_{ii}$, $\psi_i = 1 - C_{ii}$

Seed power of d_i : $P_i = \delta_i \times \psi_i \times X_{di}$, $X_{di} = No.$ of terms in d_i (depth of indexing)

$$P_1 = 0.361 \times (1-0.361) \times 3 = 0.692$$

$$P_2 = 0.563 \times (1-0.563) \times 4 = 0.984$$

$$P_3 = 0.692$$

$$P_4 = 0.484$$

$$P_5 = 0.469$$

 \Rightarrow Select the documents with the highest seed value as the cluster seeds: choose 2 of them => n_c =2

 $C_{11}(0.361) = C_{33}(0.361) \neq C_{13}(0.199) = C_{31}(0.199) =$ they are not identical

- Which one to choose? d₁ or d₃?
 - ✓ Look at the terms used by cluster seeds chosen so far (d_2)

$$d_2 = t_1, t_2, t_3, t_4$$

Two candidate: d_1 : t_1 , t_4 , t_6

 d_3 : t_5 , t_6 => select d_3 as the next seed

✓ Assign d_1 to one of the seeds $C_{12} = 0.250 > C_{13} = 0.194$ So, it is better to join cluster of d_2

Computational cost:

Find all C_{ii} values = m

Assign non-seeds to seeds = $f(m,n_c) = (m-n_c) \times n_c$

 $m + mlogm + (m - n_c) \times n_c \approx m \times n_c$, because ($n_c \ll m$)

 $O(m \times n_c \times d)$, d : average depth of indexing (average number of terms / document)

Inverted index for seed document (IISD):

$$t_1: <2,1> <3,1>$$

 $t_2: <2,1>$

 $t_3:<2,1>$

 $t_4:<2,1>$

 t_5 : <3,1>

 $t_6: <3,1>$

 $C_{12} = 0$, $C_{13} = 0$

• t1 for d1:

 $C_{12} = C_{12} + \alpha_1 \times (d_{11} \times \beta_1 \times d_{21}) = 0 + 1/3 (1 \times 1/4 \times 1) = 1/12$

 $C_{13} = C_{13} + \alpha_1 \times (d_{11} \times \beta_1 \times d_{31}) = 0 + 1/3 (1 \times 1/4 \times 1) = 1/12$

• t₄ for d₁:

$$C_{12} = C_{12} + \alpha_1 \times (d_{14} \times \beta_4 \times d_{24}) = 1/12 + 1/3 (1 \times 1/2 \times 1) = 0.250$$

• t₆ for d₁:

$$C_{13} = C_{13} + \alpha_1 \times (d_{16} \times \beta_6 \times d_{36}) = 1/12 + 1/3 (1 \times 1/3 \times 1) = 0.194$$

Computational cost:

$$(m-n_c) \approx m => O(m \times X_d \times tg_s)$$
, $X_d = average number of term/documents$

Indexing clustering relation implied by C³M

$$n_{C} = \sum_{i=1}^{m} \delta_{i} = \sum_{i=1}^{n} \delta_{i}'$$

$$n_c = (m \times n)/t = (5 \times 6)/14 = 30/14 \approx 2$$
 ,t: number of terms (non-zero terms) in D

 X_d = depth of indexing D (average number of terms/documents) = t/m

 t_g = average number of document / term = t/n

$$\Rightarrow$$
 $n_c = n/X_d = m/t_g$

Cluster validation (cluster quality measurement)

➤ Are the clusters meaningful??

Cluster Hypothesis: documents similar to each other would be relevant to the same query and would appear in the same cluster.

- 0. User evaluation: difficult
- 1. Internal criterion
 - a. High intra cluster similarity
 - i. Documents within a cluster are highly similar
 - b. Low intra cluster similarity
 - i. Documents in different clusters are highly dissimilar
- 2. External criterion

Classification

Clustering

Gold standard (ground truth) =clustering structures produced by human experts

Clustering structure generated by algorithms

Rand Index (RI): consider pairs of objects and find ratio of correct decision.

Total number of this pairs: $\binom{n}{k} = \frac{n!}{(n-k)! \ k!}$

- ✓ TP (true positive) = two "similar" documents are assigned to the "same" clusters
- ✓ TN (true negative) = two "dissimilar" documents are assigned to "different" clusters
- ✓ FP (false positive) = two "dissimilar" documents are assigned to "same" clusters
- ✓ FN (false negative) = two "similar" documents are assigned to "different" clusters

$$RI = \frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}}$$

Ground truth:

Clustering:

Number of pairs: $\binom{6}{2} = 15$

ab	ac	ad'	ae'	af'	bc	bd'	be'	bf'	cd'	ce'	cf'	ďe'	d′f′	e'f'
TP	FN	TN	TN	TN	FN	TN	TN	TN	FP	TN	TN	FN	FN	TP

F-measure -> F=
$$\frac{2 \times P \times R}{P+R}$$

Harmonic mean of Recall (R) and Precision (P):

$$P = \frac{TP}{TP + FP} = 2/3$$

$$P = \frac{TP}{TP + FP} = 2/3$$
 , $R = \frac{TP}{TP + FN} = 2/6$

$$\Rightarrow \text{ F-measure} = \frac{2 \times \frac{2}{3} \times \frac{2}{6}}{\frac{2}{3} + \frac{2}{6}} = 0.44$$

Purity: each cluster is assigned to the class which is most frequent in the cluster. Number the correct assignments and then divide it by the total number of elements.

- ➤ DB: 4, IR: 5, OS: 7
- Clusters:

Purity =
$$\frac{3+3+3}{4+6+6}$$
 = 9/16 = 0.56

Purity is another approach that we can use with IR test collections.

For a particular query consider clusters that contain at least one relevant document (target cluster).

Cluster Hypothesis: documents similar to each other would be relevant to the same query.

Expectation: number of target clusters for a query should be small.

Questions:

Consider below clusters:

1. Compute Purity for this clustering.

Answer:

Number of members of the majority class for the three clusters are:

Purity =
$$\frac{5+4+3}{17}$$
 = 0.7

2. Compute Rand Index for this clustering.

Answer:

We first compute TP +FP. The three clusters contain 6, 6, and 5 points, respectively, so the total number of "positives" or pairs of documents that are in the same cluster is:

$$TP+FP=\left(\begin{array}{c}6\\2\end{array}\right)+\left(\begin{array}{c}6\\2\end{array}\right)+\left(\begin{array}{c}5\\2\end{array}\right)=40$$

Of these, the x pairs in cluster 1, the o pairs in cluster 2, the \circ pairs in cluster 3, and the x pair in cluster 3 are true positives:

$$\mathrm{TP} = \left(\begin{array}{c} 5 \\ 2 \end{array}\right) + \left(\begin{array}{c} 4 \\ 2 \end{array}\right) + \left(\begin{array}{c} 3 \\ 2 \end{array}\right) + \left(\begin{array}{c} 2 \\ 2 \end{array}\right) = 20$$

Thus, FP= 40-20 = 20. FN and TN are computed similarly, resulting in the following contingency table:

	Same cluster	Different clusters
Same class	TP = 20	FN = 24
Different classes	FP = 20	TN = 72

$$RI = (20+72)/(20+20+24+72) \approx 0.68$$

3. Compute F-measure for this clustering.

Answer:

Based on previous question calculations, we can compute P and R: P = 20/40 = 0.5, $R = 20/44 \approx 0.455$

So, we can calculate F-measure easily: $F \approx 0.48$

Consider below D matrix:

4. Compute the clusters using C3M:

$$C = S \times S'^{T} = \begin{pmatrix} 0.375 & 0.125 & 0.125 & 0.375 \\ 0.083 & 0.356 & 0.356 & 0.191 \\ 0.063 & 0.270 & 0.520 & 0.145 \\ 0.248 & 0.191 & 0.191 & 0.356 \end{pmatrix}$$

$$n_c = 5*4/12 = 1.66 \approx 2$$

Now we choose d3 as our first seed of cluster and then we have: d3->t1, t2, t3, t4 And d2->t1, t2, t4 , d4->t2, t4, t5. So, we choose d4 as the next seed.

$$d2 \Rightarrow C_{23} = 0.356 > C_{24} = 0.191 \Rightarrow$$
 we join d2 to cluster of d3 $d1 \Rightarrow C_{13} = 0.125 < C_{14} = 0.375 \Rightarrow$ we join d1 to cluster of d4

5. Compute the clusters using single link dendrogram (compute similarity matrix using dice coefficient):

$$S12= (2*1)/(2+3) = 0.4$$
, $S13= (2*1)/(2+4) = 0.33$, $S14= (2*2)/(2+3) = 0.8$
 $S23= (2*3)/(3+4) = 0.85$, $S24= (2*2)/(3+3) = 0.66$, $S34= (2*2)/(4+3) = 0.57$
 $S:$

$$\begin{bmatrix}
1 & 0.4 & 0.33 & 0.8 \\
- & 1 & 0.85 & 0.66 \\
- & - & 1 & 0.57 \\
- & - & - & 1
\end{bmatrix}$$

Sort these numbers:

1	d2, d3	0.85
2	d1, d4	0.8
3	d2, d4	0.66
4	d3, d4	0.57
5	d1, d2	0.4
6	d1, d3	0.33

Then our dendrogram must be like below:

We can see that most probable two clusters is (d1, d4) and (d2, d3) which is same with the question no.4 result with C3M solution.